当前位置: 微经验 > 经验 > 其他 > 三角函数的倒数关系公式
三角函数的倒数关系公式:sinαcscα=1、cosαsecα=1、tanαcotα=1。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
余弦函数的倒数称为割线函数。在一种推导中,割线是从xy-平面的原点绘制的,并且割开了单位圆,成为由线x=1形成的三角形的斜边,该直线与单位圆垂直切线(切线)作为它的一面。割线的意思是“割”。使用相似三角形的性质,可以证明斜边(长度为1)和余弦(基数)的比率等于从原点开始与(相交)线相交的(割线)的比率。切线(正割线)及其“底”为1。
三角函数的积化和差公式是sinα+sinβ=2sin(α+β)/2×cos(α-β)/2,sinα-sinβ=2cos(α+β)/2×sin(α-β)/2等等。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数,也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数的定义:当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对于AB与AC的夹角∠BAC而言:对边(opposite)a=BC;斜边(hypotenuse)h=AB;邻边(adjacent)b=AC。
三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1。
商的关系:sinα/cosα=tanα=secα/cscα。
平方关系:平常针对不同条件的常用的两个公式一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)。
证明:(sina+sinθ)*(sina-sinθ)=2sin[(θ+a)/2]cos[(a-θ)/2]*2cos[(θ+a)/2]sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)。
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数、正割三角函数、和余割三角函数。特殊三角函数值特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
更多精彩资讯请关注微经验,我们将持续为您更新最新资讯!
上一篇: 五大网球公开赛哪个含金量最低 下一篇: 适合学生用的洗面奶