当前位置: 微经验 > 经验 > 其他 > 证明菱形的判定方法

证明菱形的判定方法

更新时间:2023-04-05

1、证明菱形的判定方法

  四边都相等的四边形是菱形;两条对角线互相垂直的平行四边形是菱形;邻边相等的平行四边形是菱形;对角线互相垂直平分的,四边形是菱形;一条对角线平分一个顶角的平行四边形是菱形。以上都是判定菱形的方法。

  中点四边形:依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。

  菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为菱形,对角线相等的四边形的中点四边形定为矩形。)

  菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

  菱形的面积计算:1.对角线乘积的一半。(只要是对角线互相垂直的四边形都可用);由把菱形分解成2个三角形,化简得出;2.底乘高;3.设菱形的边长为a,一个夹角为θ,则面积公式是:S=a^2·sinθ。

2、菱形的判定方法4条

  菱形的判定定理有:四条边都相等的四边形,对角线相互垂直的平行四边形,有一组邻边相等的平行四边形。在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。

  菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。

3、如何做一个菱形的内切圆

  菱形的内切圆的做法为连接菱形的对角即作两个角对角线,两个角对角线会在菱形中心有一个交点,再以这个点向菱形任意一边作垂线,最后以交点为圆心,垂线段长为半径画圆,这样就能作出菱形的内切圆。菱形在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。

更多精彩资讯请关注微经验,我们将持续为您更新最新资讯!

上一篇: 太阳简笔画带颜色 下一篇: 大学学设计一定要是艺术生吗