可以证明菱形的条件有四个,分别是邻边相等的平行四边形、对角线互相垂直的平行四边形、对角线互相垂直平分的四边形、对角线为相应顶角平分线的四边形。
菱形是特殊的平行四边形,含有四个顶点,同时不仅是轴对称图形,也是中心对称图形,对称轴有2条,即两条对角线所在直线,菱形的对角线互相垂直平分且平分每一组对角。
1、性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的对角线互相垂直平分且平分每一组对角;菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;菱形是中心对称图形。
2、判定:一组邻边相等的平行四边形是菱形;互相垂直的平行四边形是菱形;四条边均相等的四边形是菱形;对角线互相垂直平分的四边形;两条对角线分别平分每组对角的四边形;有一对角线平分一个内角的平行四边形。
一、菱形的定义:一组邻边相等的平行四边形叫做菱形。
二、菱形的性质:1、对角线互相垂直且平分;2、四条边都相等;3、对角相等,邻角互补;4、每条对角线平分一组对角;5、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形;6、在60度的菱形中,短对角线等于边长,长对角线是短对角线的根号3倍;7、菱形具备平行四边形的一切性质。
三、菱形的判定:1、一组邻边相等的平行四边形是菱形;2、四边相等的四边形是菱形;3、关于两条对角线都成轴对称的四边形是菱形;4、对角线互相垂直且平分的四边形是菱形。
更多精彩资讯请关注微经验,我们将持续为您更新最新资讯!